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Fishspear: A Priority Queue Algorithmlr

(EXTENDED ABSTRACT)

Michael J. Fischer

Yale University
New Haven, Conaecticut

Abstract

The Fishspear priority queue algorithm ie presented
and analyzed. Fishspear makes fewer than §0% as
many comparisons as heaps in the worst case, and its
relative performance iz even better in many common
situations. The code itself embodies an unusual recur-
sive structure which permils highly dynamic and data-
dependent ezecution. Fishspear also differs from heaps
in that it can be implemented efficiently using sequen-
tiol storage such as stacks or tapes, making il possibly
attractive for implementation of very large queues on
paged memory systems. (Details of the implementation
are deferred to the full paper.)

1 Introduction

A priority queue is an abstract data type consisting
of a finite multiset P over a linearly ordered universe
D together with the following operations:

MAKEEMPTY: Sets P :=§.
EMPTY?: Returns true if P = §, false otherwise.
INSERT(z): Sets P := Pu {z}.

DELETE MIN: Sets P := P - {y} and returns y, where
y is a least element in P.

Priority queues find application in discrete event simu-
lation, computational geometry, shortest path compu-
tations, and many other areas of computer science.

A simple implementation of priority queues keeps the
elements in an ordered list. Insertions are performed
by binary search and take [log 4] comparisons to yield
a list of size A, and the remaining operations take no

1This work was supported in part by the Office of Naval Re-
search under Contract NO0OO14-82-K-0184, and by the National
Science Foundation under Grant MCS-8116678.

Michael S. Paterson

University of Warwick
Coventry, England

comparisons.! However, the time per insertion is Q(k),
making the algorithm unattractive in practice for all
but very small queues.

The Aeap (1] is a standard data structure for imple-
menting priority queues which, like the ordered list,
uses Oflog k) comparisons per operation, but the time
per operation is linear in the number of comparisons
and so is also O(log k). Indeed, heaps are so common
as to be often identified with the abstract data type
which they implement. So there is no confusion, by a
“beap” we mean a balanced binary tree with elements
z; labelling each node i such that for any nodes i, j, if
i is an ancestor of j, then z; < z;.

One of the first applications of heaps was to an algo-
rithm for sorting n items using O(n log n) comparisons
[5). Since ©2(n logn) is a lower bound on the number of
comparisons for sorting, it follows that the amortized
cost? of a priority queue operation is (2(logn) in the
worst case, where n is the length of the operation se-
quence. Since heaps achieve this bound, they are in
some sense optimal.

Another intriguing property of heaps is that they ex-
ploit the ability to randomly access memory. The pat-
tern of memory accesses is dynamically determined by
the data, and there is no apparent way of implementing
heaps while maintaining the logarithmic amortized op-
eration cost on more restrictive types of memory such
as tapes or stacks.

Other data structures such as 2-3 trees, etc. can
also implement priority queues with similar complexity
bounds, but all require random access storage. Thus,
priority queues have seemed to be an example of an
abstract data type whose efficient implementation re-
quired random access storage, and heaps are a simple
implementation which seemed optimal.

In this paper, we show that both intuitions are wrong

'All logarithms are taken to the base 2 unless specified
otherwise.

2The emortised cost of a sequence of operations is the total cost
of the sequence divided by the number of operations [8], [4).




by presenting a new priority queue algorithm, Fishs-
pear, which can be implemented with seguential stor-
age (using a fixed number of pushdown stacks), and
which is more efficient than heaps in two senses which
are made more precise in the next section. First of
all, it has similar amortized efficiency to heaps in the
worst case (O(log n) comparisons per queue operation),
but the coefficient of log n is actually less (1.2 versus
1.5) on sequences that start and end with the queue
empty. Secondly, the number of comparisons is “little-
oh” of the number made by heaps for many classes of
input sequences that are likely to occur in practice.
For example, if the quene builds to a certain size A
and then receives alternately a very large number of
INSERT and DELETE_MIN operations, where the ele-
ments to be inserted are drawn randomly with uniform
distribution from the unit interval, then the amortized
pumber of comparisons made by heaps for each such
pair is about 3logh (logh for the INSERT and 2logh
for the DELETE MiN), whereas the amortized cost for
Fishspear is O(1). (The queue at any time during this
procedure contains the A largest elements ever inserted;
hence, the size of the smallest of these approaches 1, so
the probability that a newly-inserted element will be
deleted by the very next operation also approaches 1.
Fishspear is particularly efficient in this situation.)

More generally, the number of comparisons required
by Fishspear depends only on the size of the “active”
part of the queue, not on the overall size. In the above
example, the active part shrinks over time as the queue
fills with larger and larger elements. This notion is
quantified more precisely in the next section.

Fishspear can be implemented using sequential stor-
age such as tapes or stacks so that the overall run time
is proportional to the total number of comparisons.®
Sequential storage algorithms such as Fishspear are
attractive on typical paged computer systems since
they tend to exhibit better paging performance than
truly random-access algorithms such as heaps. This,
together with the better behavior on common but re-
stricted classes of operation sequences, couid make
Fishspear an attractive alternative to heaps in certain
practical situations. We hope eventually to obtain ex-
perimental data to support such a claim.

The principal disadvantages of Fishspear are that it
is more complicated to implement than heaps, and the
overhead per comparison is greater.

Fishspear is similar to self-adjusting heaps [3] in that
the behavior depends dynamically on the data and the
cost per operation is low only in the amortized sense—
individual operations can take time ((n) even though

IDetails are deferred to the full paper.
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that occurs only rarely. Important differences are that
self-adjusting heaps support an additional operation,
MELD, which Fishspear does not, but Fishspear does
not require random access storage. We do not know
the relative performance of the two algorithms on re-
stricted classes of operation sequences.

2 Performance Bounds

We now look in some detail at how to measure the
performance of priority queue algorithms.

The speed of sorting algorithms, for example, is often
expressed in terms of the worst-case or average num-
bers of comparisons used in sorting n input elements.
They are useful expressions in that context since in
many applications it is reasonable to assume that all
initial orderings of the inputs are about equally prob-
able and thus the parameter n provides an adequate
description of the problem. We need the further as-
surance that the running time can be closely related
to the npumber of comparisons made so that the more
combinatorial analysis of the number of comparisons
yields results on program performance.

The case of priority queues presents no such sin-
gle natural parameter. The total number of INSERT
and DELETE_MIN operations performed is one possi-
ble measure but in many applications the maximum
length of the queue attained is expected to be far less
than the total number of elements inserted. We require
a measure more sensitive to the demands made on the
priority queue.

A performance measure we shall use is based on the
sequence h = A, ..., h, denoting the size of the queue
immediately after the insertion of each of n elements.*
The sequence h is called the size profile for that run
of the priority queue, where by run we shall mean
any sequence of priority queue operations for which
DELETE_MIN is never applied to an empty queue and
the queue is initially and finally empty. For a run with
size profile h, the usval heap implementation may use
log h; comparisons at the jth insertion and a corre-
sponding 2 log &, comparisons for that deletion which
subsequently first takes the queue from size i down to
site A = 1. Hence an upper bound for the worst-case
number of comparisons is approximately 3 log h,.
The comparisons for the naive list implementation are
3 [log A;]. As a lower bound, we bave

Theorem 1 The worst-case number of comparisons
used by any priority queue algorithm on runs with size

‘Here the parameter n is the aumber of insertions, not the total
length of the operation sequence.
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profile h is at least

L
Y loga,| .
=1

Proof: Consider all possible queue runs with size pro-
file h and distinct input elements. The priority queue
algorithm is required to determine the unique correct
order of the output elements. Elements simultaneously
in the queue are output in order, so each possible way
of inserting a new element into the queue yields a dis-
tinct output sequence. There are h;.; + 1 = h; places
where the j** element can be inserted relative to the
other elements in the queue at that time, and each of
these yields a different output order; hence, the sumber
of runs which must be distinguished is [ A,. By the
usual information-theoretic argument, any algorithm
requires at least [log []4;] = [T log &,] binary com-
parisons to distinguish among these runs.

Fix a run and let z; be the i** element inserted into
the queue. Now consider any element y in the queue
at a particular time. [t will be convenient to associate
with each such y a distinct i such that y = z;. If the
z, are all distinct, the issociation is obvious, but since
we permit the queue to be a multiset, there may be
more than one way to make the correspondence. For
definiteness, if the queue contains k copies of y at a
particular time 7, we associate those copies with the &
largest elements of {i < n, | y = z;}, where n, is the
number of INSERT operations up to time 7. Implicit in
our use of the notation “z;" is that 1 is associated with
the element z;, so we say “z, is in the queue at time
™ to mean that z; is contained in the multiset at time
r and is associated with index i.

We now define a strong total ordering < on the z,'s.
z, < z, if either 2, < z,, or z, = z, and ¢ < j. By the
conventions of the preceding paragraph, it is clear that
if z; < z; and z;,z, are simultaneously in the queue,
then z, will appear as output before z;.

The depth of z; at a time when it is in the queue is
one plus the number of elements z, < z, in the queue at
that time. There are several applications where most
of the elements inserted attain only a relatively shal-
low depth during their residence in the queve. An ex-
ample is when the input elements are drawn from a
uniform distribution and the profile remains at an ap-
proximately constant level for long periods. We would
like to take advantage of such behavior with an al-
gorithm which does not disturb the deeper elements
unnecessarily.

For a more refined analysis of complexities, we may
define the mez-depth profile m for a run as the se-
quence m;, mg,..., where m; is the maximum depth

attained in the queue by element z; during the run.
While the usual heap implementations appear to de-
rive no advantage when m <€ h, our main theorem
shows that Fishspear requires at most

L]
¢ z: logm; + O(n)
=1
comparisons on a run with n insertions (and n dele-
tions), where the coefficient c is less than 2.4.

Less apparent is that the upper bound for Fishspear
holds even if “m,” is replaced by “h,". Indeed, an
individual element can attain depth in the queue much
greater than the size of the queue when it was first
inserted. Nevertheless, on the average, the m’s are no
bigger than the h's.

Theorem 2 Consider a priorily queue run with maz-
depth profile m and size profile h. There ezists a per-
mutalion x such that m; < hy(i) for alli, 1 € i< n.

Proof: Suppose there is some pair 1,5 with ¢ < 5 and
z; > z;, where z;,z, are adjacent in the total order-
ing < of all the elements. We consider the effect of
interchanging z; and z, in the run.

If z; leaves the queue before z, enters, this inter-
change does not affect m; or m;. If not, let M be
the maximum depth attained by z; before z; enters
and let M' and M" be the maximum depths attained
by z; and z, respectively after this time. Note that
M' > M". Before the interchange,

m; = max{M, M’} and m,; = M",
while after
m; = max{M, M"} and m,; = M’.

We consider two cases and compare the pairs {m,,m,)
before and after the interchange.

1. MM,
Before: (M'. M"). After: (max{M.M"} M').

2. M' <M.
Before: (M, M"). After: {M,M').

In each case the pair, regarded as a multiset, increases
in value in one element or remains the same.

We can repeat this process wherever there is a pair of
elements with adjacent values where the larger value is
inserted first. The Bnal result wili be a “FIFO” run in
which the elements are inserted in order of increasing
value. For such a run, m; = A, since the initial depth of
any element, which will be i, here, cannot be increased
by subsequent insertions. Since each interchange on
the way to coastructing the “FIFO” run could oanly
increase the values of {m,, m,...} as a multiset, the
result follows at once.
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8 The Fishspear Algorithm

The algorithm which we present in Section 3.2 is an
instance of a general class of (non-deterministic) algo-
rithms which all operate on the same data structure
called a fishspear. The correctness of such algorithms
is fairly easy to see. What is not obvious is that there
is a deterministic rule for making choices that leads to
good behavior.

3.1 Fishspear Data Structure

The Fishspear data structure represents a priority
queue as a collection of sorted lists called segments.
The collection is partially ordered by the rule that
ULVilz<yforeveryze€Uandy€eV. Ak-
barbed fishspear consists of (possibly empty) segmeants
U,Wyg,...,W, and Vy,...,V,. Segments U, W,,..., W,
are linearly ordered and form the shaft of the spear,
that is, U <€ W) € Wiy € ... € W,. Segments
Vi,..., Vi are the barbs of the spear and satisfy U <
Ve, USV,and W; S Viforalli,jwithk2i>i21.
A spear is illustrated in Figure 1.

v Ww Wi-1 . W,
N \""'\’k'z\

Figure 1: A k-barbed fishspear.

Five primitive operations can be performed on the
data structure:

PMERGE: Assumes W, is non-empty. Performs a “par-
tial merge” of V; with Wy by comparing the first
element in W, with the first element in V) and
appending the smaller one to U. (IfV, is empty,
the first element of Wy is appended to U.)

BARB_MERGE: Assumes £ > 1 and W, is empty.
Merges V, into Vi_,, and sets k := k - 1. The
result is a (k — 1)-barbed fishspear.

TOP_CAT: Assumes k = 1 and W, is empty. Appends
Vi to U and sets k := 0. The result is a 0-
barbed fishspear (i.e. the entire queue is sorted
and resides in U).

BARB_CREATE(X): Creates a new segment Vi) ini-
tialized to X. Sets Wiy, := U, U := NIL, and
k:= k 4+ 1. The result is a {k + 1)-barbed fishs-
pear.

DELETE.SHARP: Assumes U is non-empty. Deletes
and returns the leftmost (i.e. smallest) element
ofU.

In addition to the above, we assume the existence of
basic operations for testing and comparing the lengths
of the various segments.

The priority queue operation EMPTY? is imple-
mented by testing if all of the fishspear segments are
empty, and MAKEEMPTY can be defined in terms of
EMPTY? and DELETEMIN. To do INSERT(z), one
merely performs BARB_CREATE({z}) on the fishspear
data structure. To do DELETE_MIN, an application of
DELETE_SHARP suffices, provided that U is non-empty.
The following algorithm is a lazy approach to making
sure U is non-empty:

if U is empty then begin
while £ > 1 and W, is empty do BARB_MERGE;
if W, is non-empty
then PMERGE
else TOP_CAT
end

Performing this code before every DELETE MIN oper-
ation will result in a correct, albeit inefficient, priority
queue algorithm.

It is easy to construct examples which cause the
above code to make (I(n?) comparisons on an n-
element input sequence. For example, such behavior
results on any sequence of n insertions followed by
n DELETE_MIN operations. The n insertions produce
an n-fishspear with one element in each barb and an
empty shaft. At the time of the first DELETE MIN, the
above code combines all n barbs in a series of unbal-
anced merges requiring {3(n?) comparisons.

3.2 A Particular Algorithm

The strategy of our algorithm is to selectively per-
form PMERGE, BARB_MERGE and TOP_CAT operations
before each priority queue operation so as to maintain
a kind of balance on the sizes of the various segments
of the fishspear. Exactly what kind of balance our
algorithm actually achieves is unclear. Through an in-
volved analysis, we provide a good upper bound on the
total number of comparisons, but we have been unable
to obtain a simple inductive condition on the fishs-
pear which our algorithm preserves and from which
our bound follows.

Because of the stack-like quality of the fishspear, it
is natural to present our algorithm recursively. How-
ever, it is not the queue operations such as INSERT and

L ——— e




DELETE _MIN that are defined recursively but rather a
process Q which runs autonomously, alternately mas-
saging the fishspear and processing priority-queue op-
erations. In other words, we regard Q as a black box
to which we send priority queue operations to be per-
formed and which sends answers back to us in response
to those operations. Q is separate from the “user” pro-
cess which is issuing the priority queue operations, al-
though Q could be implemented as a coroutine just as
well. This view is illustrated in Figure 2.

queue operations

User Q
returned values

Figure 2: Process structure of the Fishspear algorithm.

We assume two synchronized primitives for interpro-
cess communication, SEND(m) and RECEIVE, where m
is a message. (Cf. CSP [2].) A process executing
RECEIVE blocks until the other process is ready to exe-
cute SEND(m) for some m, at which time the RECEIVE
operation returns m as its value and both processes
continue. Similarly, a process executing SEND(m) is
forced to wait until the other process is ready to exe-
cute RECEIVE.

Messages are elements of D U {'del’,’empty?'} U
{'yes’,'no’}. A message in D denotes an element to
be inserted, if sent by the user process, or the mini-
mum element just deleted from the queue, if sent by
Q. Messages ‘del’ and ‘empty?” are requests by the user
process to perform a DELETE MIN or EMPTY? opera-
tion on the priority queue, ‘yes' and ‘no’ are responses
by Q to the ‘empty?’ request. We assume the user
process performs RECEIVE immediately following each
SEND('empty?’) and SEND{ del’) request in order to re-
ceive the response.

Q maintains two pieces of global data—an integer &
and a k-fishspear stored in variables U, V;, and W;,
j 20, as described above. All of the manipulations of
this data are performed by the five fishspear primitives,
which are invoked by Q.

The heart of the algorithm is the recursive procedure
S. When S is called, U is assumed to be non-empty.
S performs one or more RECEIVE operations, carries
out the actions specified by the messages received, re-
sponds to each ‘del’ or ‘empty?’ request by issuing an
a SEND with the answer, and modifies the fishspear
to reflect the changes in the queue contents. When S
eventually returns, the length k of the fishspear is one
greater than when it was called, and W, = §.

The code for S is given in Figure 3. 5 is a tuning

parameter. We are able to prove the best worst-case
bounds for 3 = 0.7034..., but any value between 0
and 1 yields a correct algorithm. In this program, and
elsewhere in this paper, we follow the convention that
segments and sets are named by upper case letters and
their cardinalities are denoted by the corresponding
lower case letter. Thus, u denotes the length of U, etc.

Procedure S:
Uy = U
BASE
while w; > 0 do
if vy > u or u > Su, then PMERGE
elge {vx < u} begin
S; BARB_MERGE
end

NH O W=

Figure 3: The recursive procedure S.

The actual processing of messages takes place in the
routine BASE, which is given in Figure 4. When BASE
is called, U is assumed to be non-empty. BASE pro-
cesses messages until either a new element is inserted
into the queue or U becomes empty. In either case,
BASE calls BARB_CREATE just before returning, so the
resulting fishspear is one longer than at the time of call.

Procedure BASE:
repeat
z := RECEIVE
if z = ‘empty?’ then SEND 'no’
else if z = ‘del’ then SEND DELETE _SHARP
untilz€Doru=0
if z € D then BARB_CREATE({z})
else BARB_CREATE(#)

NP

Figure 4: Code to process queue operations.

Finally, we give the top-level code for process Q
which runs the priority queue algorithm by repeatedly
calling S. Since S can only be called when the fishspear
is non-empty, Q itself reads and processes messages
whenever the queue is empty.

4 Complexity Analysis
We present an upper bound on the worst-case num-

ber of comparisons, Comp(m), made by fishspear on
an input sequence with max-depth profile m.
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Process Q:
ki=0;U:=9
repeat forever
if u = 0 then begin
z := RECEIVE
if z = ‘empty?’ then SEND ‘yes’
else if z = ‘del’ then error
else BARB_CREATE({z})
end
else begin
10. S
11, end
12. TOP _CAT

©PND O,

Figure 5: The top-level driver.

Theorem 3 For sll 3, 0 < f < 1, there exist ¢, ¢
such that for all runs with n insertions and maz-depth
profile m,

n
Comp(m) < cz logm; +c'n.
i=1
In particular, for 8 = .7034, we may take ¢ = 2.4.
(Further details on the interdependence of ¢, ¢’ and §
are given in the analysis below.)

The proof consists of several parts. First, we clas-
sify each comparison made by the algorithm as being of
Type I or Type 1], and we observe that at most n Type
I comparisons are made in the course of the algorithm.
We analyze the number of Type Il comparisons by set-
ting up a toll “economy” in which tolls are charged to
queue elements at various points in the algorithm and
are used to pay for comparisons. The tolls collected
are sufficient to pay for all the Type 11 comparisoas,
and each element z; is charged only clog m; + ¢ tolls.
Summing over all the elements gives

# Type Il comparisons < tolls collected
< cz:logrm +'n.

The theorem then follows by summing the upper
bounds for the two types of comparisons and taking
d=c+1.

4.1 Comparison Types

A comparison which results in an element first en-
tering the shaft of the fishspear is of Type I; all other
comparisons are Type 11. An examination of the algo-
ritbm shows that there are only two places in which ele-
ments are compared: withia the PMERGE of line 4 of S,

T —— L ANE. cn s mte cani st ot

and within the BARB_MERGE of lin® 6 of S. PMERGE
compares the first element of V. with the first element
of W, and appends the smaller (higher priority) to U.
Thus, that comparison is of Type I if the smaller ele-
ment came from Vi and is of Type Il if the smaller
element came from W,. All comparisons made by
BARB_MERGE are of Type II, since no elements enter
the shaft.

Lemma 1 The algorithm makes at most n Type [
comparisons.

Proof: Once an element enters the shaft, it remains
there until eventually deleted from the queue. Hence,
at most n Type | comparisons are made in the course
of the algorithm since each element enters the shaft
only once. §

4.2 The Progress Lemma

We now take a more detailed look at the recursive
structure of the algorithm and the actions which it per-
forms. We first introduce some notation to allow us to
talk about the way the fishspear changes over time. At
any time r, let U, be the set of elements in segment U,
let V, be the set of elements in segment V;, let V! be
the set of elements in segment V,_,, assuming £ > 1
at that time, and let W, be the set of elements in W,.
These definitions depend on the current value of &, so
in particular, V, always refers to the top barb of the
fishspear, and V/ always refers to the second-from-top
barb. As usual, the corresponding lower case letter
refers to the cardinality of the set, so u, = |U,|, etc.

Now consider a single instance of a call on S and the
computation that takes place between the time a of the
call and the time w of the return. Let o' be the time
just before line 3 of S is executed for the first time, and
let 7 be a time at which control is between lines of S
such that a’ € 7 € w. We define the following sets of
elements:

IN, = set of elements inserted into the
queue after time a and still present
in the queue at time r;

ouT, set of elements present in the queue
at time a but gone from the queue

by time r;

UM = U,nU,, the set of old elements in
U at time 7;

UMY = U,NnIN,, the set of new elements
in U at time 7.
We often omit the subscript r when r is clear from
context. The relationships that exist among these sets

e bttt ahath . L
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are given in Figure 6 and are easily proved by induction
on 1, for r between o’ and w.

U

.

ud 1

old hew
ot v v | 4 )

Us IN

Figure 6: Relations among the basic sets after time o’.

Lemma 2 (Progress Lemma) Let r be any time, o' <
r < w, such that the test u 2 Pu, in line § of S has
never evaluated to ‘true’ anytime during the interval
from a' to r, and control is between lines of S. Then

ve 2uld o1,

Proof: To begin with, observe that i the condition
© > Ju, once becomes true, then it remains true for
the duration of that execution of S, for as long as it
is true, the ‘then’ branch of the condition in line 4 is
always taken, and PMERGE does not change u, nor
decrease u.

We proceed to prove the lemma. At time r = o',
U is empty, so u2™d = 0 and the lemma holds. Subse-
quently, the only places where U or V are modified are
in lines 4 and 6 of S. We consider them in turn.

Suppose 7 is a time just after the PMERGE in line 4
of S has been performed. and suppose the conditions of
the lemma are satisfied at time 7. Then u, < Su,, so
v > u > u° just before the PMERGE. The PMERGE
moves one element from either V) or W, into U. If it
moves an element from Vi, then v decreases by 1 but
4°¥ remains unchanged (since Vi consists entirely of
new elements). If it moves an element from W;, then
u°! increases by 1 but v remains unchanged. In either
case, v > u°Md — 1 afterwards.

Now consider the effect of line 6 on U and V. The re-
cursive call on S modifies U and adds a new barb to the
fishspear. The call on BARB_MERGE then merges the
top two barbs together, leaving the fishspear with the
same aumber of segments as it had before the recursive
call. Line 6 can only decrease (or leave unchanged) the
size of U °W, for the segment U immediately after the
recursive call consists entirely of elements that were
in U just before the call together with new elements
(that is, elements inserted into the queue during the
recursive call), and BARB_MERGE does not affect U.
Line 6 can only increase (or leave unchanged) the size
of V, for its overall effect is to add to V those elements
which the recursive call on S placed in the new barb,

and these are all new elements inserted during the re-
cursive call. Hence, lines 6 preserves the truth of the
conclusion of the lemma. The lemma then follows by
induction. §

The following is a direct consequence of the Progress
Lemma.

Lemma 3 For any ezecution of S, either

tin,+out, 2u, -1

or
n, 2 Bug - 1.

Proof: There are two cases, depending on whether the
test u > Ju, in line 4 of S ever evaluated to ‘true’.
Case 1: The test never evaluated to ‘true’. Then by
Lemma 2, v, > u2'4 - 1. Also, w,, = 0 since the ‘while’
loop of line 3 terminated. Thus, using Figure 6, we see
that in, = u2*¥ + v, and out, = u, — uS4. Hence,
ing+outy, 2 ug+ul™ -1

2 ua -1

Case 2: The test first evaluated ‘true’ in an execution
of line 4 which began at time 7. Then by Lemma 2,
vy 2 429 ~ 1. From time 7 to w, only PMERGE’s are
done, and no elements are deleted from the queue, so

in, = w0l + v, =V + v,

Hence,
. new old —
ny2u, +t' ~—1=u—1,

Since the test was about to evaluate ‘true’, we have
Uy 2 fuq, 30
tn, 2 fus — 1.

4.3 The Toll Economy

We now describe our method of analyzing the num-
ber of Type Il comparisons. We associate with each
element inserted into the queue two infinite sets of to-
kens, the in-tokens and the out-tokens. The tokens in
each set are numbered sequentially beginning with 1.
In addition, each element has two base-tokens. The
value of in-token (out-token) number d is ¢, /d (to/d),
and the value of the base token is tg, where ¢;, to, and
tp are positive constants to be specified later. They
will depend on a parameter 5§ which can be chosen ar-
bitrarily from the open interval (0, 5/2).
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We collect tolls by removing tokens from elements
that are or were in the queue. The tolls collected T is
the total value of all tokens so taken. We ensure that
any in-tokens and out-tokens taken satisfy the follow-
ing:

Tolling Rule The number p of the high-
est numbered token collected from any
element z; satisfies p < (m; +1)/5.

We remark that for any set X of elements simultane-
ously present in the queue and still possessing token
p. the Tolling Rule lets us collect token p from all but
[6p] = 1 elements of X, for those elements all have
depth at least |5p] > 6p— 1.

Lemma 4 Any manner of collecting tolls according to
the Tolling Rule results in

T <2p+(t1 +to) ilnmi+(ln2§)-n],

=1
where In z denotes the natural logarithm of z.

Proof: Since the largest token allowed by the tolling
rule is at most |[(m; + 1)/6], we have

n_Lmitn)/e] |
T < 2ta+{u+tol), Y
i=1 da=1

= m; + 1
< 2tg+(t|+to)z(l+ln > )
=1
I.‘Jl ty
sinceZ-.Sl-&-/ —dz=1+Int
=1 1 ¥
=, 2me
< o
< 2ta+(t1+to)zlﬂ 3

=1

= 2p+(ti+to) [(tlnm;) + (ln ?)n] :

Fix a run of the queue. We will associate each to-
ken collected with a particular execution of S. Before
describing exactly how this is done, we introduce a no-
tation for naming such executions.

We define S, inductively for certain strings o of pos-
itive integers. Let ¢ > 1. S; denotes the execution of
S which results from the i** execution of line 10 of the
top-level program Q, assuming Q executes line 10 at
least ¢ times in the run, and otherwise S; is undefined.

Inductively, suppose o is a string of natural numbers,
and suppose S, denotes ap. execution of S which per-
forms line 6 a total of r times. Then S,; denotes the
execution of S which results from the *® execution of
line 6 by S,, 1 €1 < r. Sy is undefined if i > r or if
So is undefined. Also, S, is undefined, where ¢ denotes
the empty string.

Let a(c) and w(c) denote the endpoints of the time
interval spanned by the execution S,. The interval of
So contains in the interval of S,/ if ¢ is a prefix of o',
and the intervals are disjoint if neither o nor o’ is a
prefix of the other.

Se is eligible to accept a token ¢ if the following con-
ditions hold:

e ¢t is a base token of element z;, and r: was in-
serted or deleted during the interval spanned by
So-

e t is in-token number p of element z,, r, was in-
serted into the queue during the interval spanned
by S,, and p < min{u, (e, (mi + 1)/6}.

e ¢t is out-token number p of element z,, 7,
was deleted from the queue during the interval
spanned by S,, and p < min{u,(,).{m +1)/5}.

We associate ¢t with the lowest level execution which
is eligible to accept it, that is, among the executions
Se eligible to accept t, we associate ¢t with the one for
which the length of & is maximal. That this is unique
follows from the fact that two distinct strings of the
same length describe non-overlapping executions. If ¢
is associated with S,, we say that t is collected by S,,
or that v tolls are taken by S,, where v is the value of
t as defined above.

Looked at from another perspective, the following
tokens are collected by S, if permitted by the Tolling
Rule:

e A base token from whatever element was inserted
or deleted from the queue by the execution of
BASE in line 2 of S,.

¢ In-tokens u,(sq) through u,(e) — 1 of element z
if z was inserted in the queue during the i** ex-
ecution of line 6 of S,.

o Out-tokens z4(oi) through us(o) — 1 of element
z if z was deleted from the queue during the **
execution of line 6 of S,.

This characterization holds because we assume 9 < 1,
so the test in line 4 of S then ensures that uq(e) <
“a(e)- Thus, if p 2 ua(eq), it follows inductively that
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Seiy is not eligible to collect any token sumber p for
any string 7. :

In the remainder of this section, we assume that
5,8 € (0,1), 5§ < B/2, and that t],t5,t,t0,tp are
positive constants which satisfy the following:

2+p 1 }
fl-mB) -’

tig— (g +to(1—g))lng-2-¢>0  (2)
holds if0 < ¢ < 8.

()

t;gmax{

tf < tl(l—%(t—"-:lt—o)). (3)
to < to(l—%(t'—:;)fo—)). (4)
ts 2 ti(1-6). (5)

Let T{c) be the total value of all tokens collected by
Sg- We now derive a lower bound on T'(0).

Lemma 5 (Tolls Lemma). Let S, be an ezecution of
S, and let a = a(o) and w = w(o). Then

T(o) 2 2uq + v,.

Proof: Consider the times a(o1), s = 1,2,... imme-
diately preceding the successive executions of line 6
during the while-loop of S. Let u; = a(ol) and let
Be41 = afot) where 1 is the least number such that
So: is defined and u,(45) > uu,. Finally, let s be the
largest index for which u, is defined. As a notational
convenience, we write (j} for u;.

Each of INy, IN,, and OUT, are sets of elements
which are simultaneously in the queue—the elements
of I N,y are all present at time j,, the elements of IN,,
are all there at time w, and the elements of OUT,, were
all in the queue at time a. By the remark following the
Tolling Rule, we can collect in-token number p from all
but |6p] - 1 of the elements in I N,y or IN,,. Similarly,
we can collect out-token p from all but |5p] — 1 of the
elements of OUT,,.

We now total up the tokens we know are collected
by S,. thereby giving a lower bound on T'(c).

1. At least one base token is collected by S, since
the call on BASE in line 2 of S causes at least one
element to be inserted or deleted. It has value

Ti(o) = te. (6)

2. Let 1< j < sandlet up_yy < p<ugy—1. (For
technical convenience, we take uy = 1.) By
the remark following the Tolling Rule, in-token

number p is collected from all but |6p] — 1 of
the elements in I N;) for a total value of at least
ti(in¢y ~(6p—1))/p. Summing over j and p gives

a total value of
s S(n=l 1
To)=3, Y tlingy—(6p-1)- (7)
J=1p=%(5-1) P

3. Let uy,) < p < up — 1. By the remark following
the Tolling Rule, in-token p is collected from all
but [5p] = 1 of the elements in IN(, U IN, for
a total value of at least

e—1

Te)= 3 t(maxting.in} - (6p - 1)}
P=u(y)

(8)

4. Let u(,) < p < u4 — 1. By the remark following
the Tolling Rule, out-token p is collected from all
but |5p] = 1 of the elements in OUT, for a total
value of at least

va~-1

T(o)= 3 to(outu—(ép—l))% 9) -

P=N(4)

Thus, T(0) 2 T}, Tilo).
By Lemma 2 and Figure 6, in(;3 2 u(;) — 1. Since
also u(;) > p in the summation, Equation 7 yields

-l

Tie)2 Su-oy X o (10)

J=1 P=w o)
Using the fact that

%5 =1

1
wiy Y ? 2 85 = Y(i-1),

P=¥(i-1)
we in turn get
Ta(o) 2 Y a(t-8)(ug) ~ uy-n)
=1
ti(1 - 6)(uge) — 1) (11)

By Lemma 2 and Figure 6, in,) > ug,) — 1, and
by Lemma 3, we have Sy, <€ in, + out, +1 <
max{u(,), iny + 1} + out, + 1. Using the fact that

| u
o o-2hm—=, (12)
= P o)

B T S T




Equation 8 then yields

va=—1 1
Ts(o) 2 ti(max{ing),in.} - (5ua ~ 1)) Z ’
=% ()
> [t; max{u(,), iny, + 1}
-t %(max{u(,). in, +1})
] Uo
—tlE(outw +1)|In u_(,; (13)
Also, Equation 9 yields
L P
T(o) 2 tolowty—(bva-1) 3 3
=%(s)
2 [tolout, +1)

_go%(max{u(,,. in, + l})
(14)

8 U
~to = (outy, + 1)[ In —=.
oﬂ(ou )] n o)

Combining Equations 13 and 14 with 3 and 4, we get
Ts(o) + Ty(o)

-5

]
_ 5 (t1 +to) Ya_
+to (l E——t—o—) (Outu + l)] In %e)

2 [t max{ugey,ing +1)

2

) max{us,,in, + 1}

+th(outy +1)]ln —2 (15)
(o)

From Equation 3, we have ¢((1 — §) 2 ¢{. Thus,
adding together Equations 6, 11, and 15, and using
Equation 5, we get

T(o)
>

te + (1= 8) (v ~1)
+l‘; m‘x{u(c)v‘.nu + 1, + tb(outu + l)l In uu(_a)
0

2

t;u(,) + [t: max{u(,). in, +1}
o
+ thout,]ln ——. 16
bosto|1n (16)
To complete the proof of the lemma, we show that

thuge + (¢ max{ugg),in, + 1} + thost,) ln ;“ﬁ
()

10

D T ———

22Uy +v,.
Let
P= BL), = M, and r= 24
Yo U Uy
and define

F = tip - [ty max{p,q} + tor|lnp-2~gq.

It suffices to show F > O since in, + 12 v,,.

We make use of two constraints on p,q,r. First of
all, the test in line 4 of S ensures that u(,) < fu,, so
p < 8. Secondly, Lemma 3 implies that either g+r > 1
org 4.

Before proceeding, consider the partial derivative
when p<g¢:

oF
dp

1
t - ltg + torl

¢ (1-‘1)-t' A
! p/ ©p

0.

<

This shows that F decreases as p increases to g.

We now consider three cases depending on how ¢
relates to p and 5.
Casel: g<p<f. Thengq+r>1l,50r21-q2>1-p.
Also, p < 1 since 8 < 1, so Inp < 0. Hence,

F

tip=tip+tor]lnp~2-¢
2 tip-[tip+to(1-p)|lmp-2~p.
By Equation 2, F > 0 as desired.
Case 2: p < q < B. Again r > 1 — q. Since the partial

derivative of F with respect to p is negative, we can
replace p by ¢ to get

F = tip-|tig+torilnp~2-¢
2 tig-|te+to(1 -q)jlng-2~gq.

Again, Equation 2 gives F > 0 as desired.

Case 3: p < 8 € q. Again the partial derivative of F
with respect to p is negative, so we can replace p by 8
and r by O to get

F

tip=(tig +torllnp-2-¢
68 -tiqlng-2-¢
[t18~2] -qltin B +1).

[\'4

(17)

We now consider two subcases,




Subcase 1: § 2 -2In 5. Then by Equation 1 we have
t} 2 ~1/In 5 2 2/5. Hence,

F 2 [t16-2]-4qltilnp+1]

(G)o--o[(&5) o]

0.

WV

Subcase 2: 8 < —2In 8. Then by Equation 1 we have

, 248
“2 Gy
Hence,
’ (2+A)lmp+5(1—-Wmp)
timhf+1 < A1-Tnf)
2lnp+48
= u-m )
< 0.

Thus, using the assumption that 3 < ¢, Equations 17
and 18 give

F

v

[2+ﬂ-2+2lnﬁ

2lnf+ 48
(1-mp) -ﬁ[

A(1-Inp)
= 0.

Thus, in all three cases, F 2 0, completing the proof
of the lemma.

We now relate the tolls collected to the comparisons
made by the algorithm.

Let gain(c) = T(c) — type;;(c), where type;; (o) is
the number of Type 11 comparisons made by S, but
ezcluding comparisons made by the subrecursive calls.

Lemma 6 Let S, be an ezecution of S, and let a =
a(o) eand w = w(c). Then

gain(o) 2 uq + v,.

Proof: Proof is by reverse induction on the length of
o, starting with the longest words ¢ for which S, is
defined.

Suppose S, is an execution of S and the lemma has
been proved for all executions S,» with o a proper
prefix of o’. Consider the i** execution of line 6 of
S (which begins at time a(ov)). The test in line 4
ensures vo(gi) < Yq(ei)- BY induction, gain(oi) >
Ua(oi) + Vuiei). Hence, gain(at) 2 vo(qi) + Vu(ei)- The
number of comparisons made by BARB_MERGE in line 6
is at most v,(04) + Vu(oi), Silce it simply merges to-
gether the two segments V. .\ = V(i) 30d Vo) in

11

the strzightforward way. Hence, the net gain of all of
the executions of line 6 is non-negative.

We now consider the PMERGE in line 4. At most
uo, Type II comparisons are made, since each such
comparison removes an element from W, and W, ini-
tially (just after line 2) has size z,. By Lemma 5,

'.I'(a) > 2u, +v,. Hence, gain(o) > u, + v, as desired.

Putting all this together gives us

Lemma T The total number of Type Il comparisons
made by Fishspear on a run with n ingertions and maz-
depth profile m i at most

2tg + (4 +to) Z.:lnmi+ (ln %E) -n] .

Proof: The run caa be partitioned into segments of
operations which are processed directly by Q and seg-
ments which are processed by a top-level callon S. The
former require no comparisons. That the total number
required for the latter satisfies the bound in the lemma
is an immediate consequence of Lemmas 4 and 6.

To complete the proof of Theorem 3, it is necessary
to analyze the constants. First, note that for any §,8 €
(0,1) with § < /2, there exist values of ¢}, 5, 81, to, tp
which satisfy Equations 1-5. Use Equation 1 to define
t]. The left hand side of Equation 2 as a function
of g is bounded from below over the interval (0, 8),
and as a function of ¢, it is linear with a positive
coefficient that is bounded away from zero. It follows
that Equation 2 is satisfied for sufficiently large tf,.
Similarly, Equations 3 and 4 can be satisfied by taking
t; = to sufficiently large, for then 25/8 < 1 and the
right hand sides are linear in ¢; = to with positive
coefficient. Finally, Equation 5 can be used to define
ts. The constant ¢ of Theorem 3 is given by

c=(ti+to) -2, (19)

and one can take
2
d=2g+1+(t+1o) In ?’

We get our best bounds by choosing § = ~2In g =
.7034.... Plugging in to Equation 1 yields ¢} =
2.843.... Calculus together with sumerical evalua-
tion shows that ti, = .5674... satisfies Equation 2,
and equality bolds (to within the limits of our preci-
sion) for ¢ = .141.... (The function of Equation 2
over the interval (0, 3) is shown is Figure 7.) Thus,
t] + t = 3.410.... By choosing 5 sufficiently close to



ey

0, we can make ¢ + (o arbitrarily close to0 3.410.... Bibliography
Finally, plugging into Equation 19 shows that the con- 4
stant ¢ of Theorem 3 can be chosen arbitrarily close

to
In(2) x 3.410... = 2.363....

In particular, ¢ = 2.4 works.
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Figure 7: The function tig— (tjg+tH(1—-¢))Ing~2—¢ ]
for t} = 2.844 and t, = 0.5675. T
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